Anthracenic and Naphthalenic vic-Diepoxides. A New Kind of Isomerization Going Through Fragmentation

Jean Rigaudy*, Mohamed Lachgar
Laboratoire de Recherches Organiques de l'ESPCI associé au CNRS, Université Pierre et Marie Curie 10, rue Vauquelin, 75231 Paris Cedex 05, France

Abstract

When treated with Lewis acids in an anhydrous medium, syn and anti anthracenic and naphthalenic vic-diepoxides 2 and 3 rearrange more or less completely to acyl-benzo or naplithopyrans 1 . This rearrangement, competing with more classical ones, appears to involve a Grob-type fragmentation followed by recyclisation. © 1997 Elsevier Science Ltd.

The behaviour towards protic or Lewis acids in non-aqueous medium of syn-diepoxides of type 2 , derived from 1,4-dimethyl-anthracenes or -naphthalenes, should differ according to whether they possess or not methyl substituents at positions 2 and 3. As a matter of fact, as shown on Scheme 1, we have previously observed that simple 1,4-dimethyl derivatives 2 a and $\mathbf{2 e}$ (with $\mathrm{R}=\mathrm{H}$) lead ultimately to diphenols $5 \mathbf{a}$ and $\mathbf{5 e}$ when treated with MgBr_{2}-etherate in benzene ${ }^{1,2}$ whereas $1,2,3,4$-tetramethyl analogues $\mathbf{2 b}$ and $\mathbf{2 f}$ (with $\mathbf{R}=$ CH_{3}) open to di-unsaturated diols $\mathbf{8 b}$ and $\mathbf{8 f}$, partly when treated alike with MgBr_{2} or more integrally with p toluenesulphonic acid in THF. ${ }^{3}$ In both anthracenic series, the presence of meso-phenyl substituents brought about more or less diverging outcomes, $\mathbf{2 c}(\mathrm{R}=\mathrm{H})$ leading to a mixture of stereomeric diones $\mathbf{6 c}$, the less crowed tautomers of 5 c , ${ }^{2}$ while 3 d , the anti isomer of $2 \mathrm{~d}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, at present the only one known, rearranged further on to $9 \mathrm{~d} .{ }^{4}$

1

a: $R=H, R^{\prime}=H$
c: $R=H, R^{\prime}=P h$

2

3

e; $R=H, R^{\prime}=H$
f; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$

Scheme 1

Fax: 01.40.79.44.25. E-mail: Jean.Rigaudy@espci.fr

Concerning intermediate stages, epoxy-ketones $\mathbf{4 a}$ and $\mathbf{4 c}$ had been already obtained in moderate yields when 2 a and 2 c were treated with ZnCl_{2} in benzene ${ }^{2}$ and we have now found that heating $\mathbf{2 b}$ with LiBr in THF affords in good yield the rather unstable epoxy-alcohol $\mathbf{7 \mathbf { b } ^ { 5 }}$, the precursor of $\mathbf{8 b}$. Moreover, the strong dependence of the isomerization course on the reaction conditions is illustrated by the obtention in high yield of epoxy-ketone $\mathbf{4 b}{ }^{\mathbf{6}}$ when the heating of $\mathbf{2 b}$ with LiBr , or MgBr_{2}, is carried out in a mixture $T H F / H_{2} \mathrm{O}$ (50/50).

More unexpected than these findings is now the detection in nearly all series of another isomerization pathway competing more or less notably with the preceding ones and leading to acyl-benzo or -naphthopyrans of type $\mathbf{1}$. The same partial rearrangement being also found for anti-diepoxides 3 , it can be already assumed that the steric arrangement of moving bonds, if it may eventually come into play, is not a determining factor of the transformation.

From Table 1 which summarizes our results, it appears that many Lewis acids in anhydrous medium are able to promote this isomerization, LiBF_{4} in acetonitrile (conditions C) appearing the best in comparative experiments $(2,3,4)$ with $\mathbf{2 b}$.

Table I - Reactions of Lewis acids with diepoxides 2 and 3 leading to isomers 1.

entry	Diepoxide	Conditions ${ }^{\text {a }}$	Products, \% yield ${ }^{\text {b }}$	
			Isom. 1	Other products
	Syn			
1	2 a	A	--.	4a, $86{ }^{2}$
2	2b	B	1b, 40	8b, 45
3	2b	C	1b, 57	8b, 30
4	2 b	E	1b, 40	10b, 15; 11b, $18{ }^{6}$
5	2 c	A	1c, 40	4c, $50 ; 6 \mathrm{c}, 8$
6	2 f	C	1f, 54	8f, 16
	Anti			
7	3b	C	1b, 35	unidentified
8	3b	E	1b, 90	...
9	3 c	D	1c, 25	4c; 6 c
10	3 c	E	1c, 25	unidentified
11	3d	C	---	9d, $50{ }^{4}$
12	3d	E	no reaction	---
13	3 f	C	1f, 17	unidentified
14	3 F	E	1f, 65	unidentified

A $-\mathrm{ZnCl}_{2}$ in benzene, at 0°.
$\mathrm{B}-\mathrm{MgBr}_{2}$-etherate freshly prepared according to ref. ${ }^{7}$, at r.t.
C $-\mathrm{LiBF}_{4}$, solution 1 M in $\mathrm{CH}_{3} \mathrm{CN}$, at r.t.
D - SiO_{2} on chromatographic plate, at r.t.
$\mathrm{E}-\mathrm{LiClO}_{4}$, extended reflux in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{8 *}$.
a - Experiments generally carried out on 0.1 or 0.2 g . of starting compound.
b- Yields of isolated products, after separation by preparative TLC on silica-gel.

* Caution: perchlorates, potentially dangerous, should not be used in large amounts or without extreme caution.

A special mention should also be made of LiClO_{4} in dichloromethane (conditions E) which has been found to give very high yields with several anti-diepoxides bearing no meso-phenyl substituents.

Structures of the new isomers 1^{9} were essentially deduced from NMR data and especially from the presence in the ${ }^{13} \mathrm{C}$ NMR spectra of all compounds of signals characteristics of an enol-ether moiety with a deshielded C-3 and a strongly shielded C-4. ${ }^{10}$ Identification of a carbonyl function, an aldehyde in the case of lc, brought also a good evidence in favor of the proposed structures.

To explain this rearrangement, it seems necessary to assume a Grob-type fragmentation followed by recyclisation as shown on Scheme 2. The dipolar ion 12 arising from the opening of one of the epoxide groups is strongly reminiscent of intermediates suggested in the acid-catalysed cleavage of 1,3 -diols to alkenes and carbonyl compounds. ${ }^{11}$ One then conceives that migration of the 2,3 bond, assisted by the opening of the second epoxide group, can lead to 13 (path a) which will recombine immediately to give 1 .

Scheme 2
Coordination by Li^{+}of the second epoxide group concomitant with the opening of the first one is probably required for the rearrangement to occur. This may explain why, in the case of $\mathbf{2 b}$, rearrangement to $\mathbf{1 b}$ is not observed with LiBr in water or in an oxygenated solvent like THF, which can both solvate strongly the cation. According to conditions, elimination leading to $\mathbf{7 b}$ (path b) or isomerization to epoxy-ketone $\mathbf{4 b}$ (path c) then takes place. On the other hand, in anhydrous medium, it is expected that reagents like LiBF_{4} or LiClO_{4}, containing no appreciably nucleophilic anions, give better yields of rearranged products, such as 1b, than LiBr or MgBr_{2} with which elimination leading to 7 b may predominate.

Inspection of Table 1 shows that structural features should also play a major role in the competition between the various possible transformations, presence of methyl substituents at positions 2 and 3 being a favourable factor to fragmentation. On the contrary meso-phenyl substituents in anthracenic diepoxides appear able to limit or even suppress this way of rearrangement as shown by the unexpected resistance of 3d towards LiClO_{4} (experiment 12). In the last case it may be that the bulky phenyl groups prevent more or less the complexation by the Li-catalyst of the epoxide bridges which should precede their opening.

References and notes:

1. Rigaudy, J.; Maurette, D.; Kim Cuong, N. Comptes rendus Acad. Sci. 1971, 273, 1553-1556.
2. Rigaudy, J.; Caspar, A.; Lachgar, M.; Maurette, D.; Chassagnard, C. Bull. Soc. Chim. Fr. 1992 129, 16-24.
3. Rigaudy, J.; Lachgar, M.; Saad, M. Bull. Soc. Chim. Fr. 1994,131, 177-187.
4. Rigaudy, J.; Lachgar, M.; Caspar, A.; Chassagnard, C. Bull. Soc. Chim. Fr. 1996, 133, 481-490.
5. 3,4-Epoxy-2-hydroxy-2,3,4-trimethyl-1-methylene-1,2,3,4-tetrahydroanthracene (7b): mp $158-160^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 3420 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$ $3 \mathrm{CH}_{3}, 5.58(\mathrm{~s}, 2 \mathrm{H}) \mathrm{CH}_{2}=, 7.90(\mathrm{~s}, 1 \mathrm{H})$ and $7.97(\mathrm{~s}, 1 \mathrm{H}) \boldsymbol{H}-9,10,7.44-7.56(\mathrm{~m}, 2 \mathrm{H})$ and $7.79-7.89(\mathrm{~m}, 2 \mathrm{H})$ $\boldsymbol{H}-5$ to $8 ;{ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.8,16.3,24.6\left(\mathbf{3} \mathrm{CH}_{3}\right), 62.4$ and $68.9(\boldsymbol{C - 3}, 4), 75.7(\boldsymbol{C}-2), 108.9$ $\left(\boldsymbol{C H}_{2}=\right.$), 125.5 to 127.7 ($6 \mathbf{C H}$ arom.), 133.1 to 133.4 ($4 C$ quat.arom.), $151.2(C-1)$, EIMS (70 eV) m/z, (r.i.): 266 (87), 248 (25), 223 (100).
6. Epoxy-ketone $\mathbf{4 b}$ has been previously obtained by photoisomerization of the corresponding diepoxide 2b; under acidic treatment, it gives a mixture of 10b and 11b (see Ref 3). One can then deduce the transient formation of epoxy-ketone $\mathbf{4 b}$ from $\mathbf{2 b}$ in experiment 4.

7. Fieser, L.F.; Fieser, M. in Reagents for Organic Chemistry, Wiley and Sons Ed 1967, Vol. 1, p. 629.
8. LiClO_{4} (in benzene) has been formerly found to effect a rapid rearrangement to carbonyl derivatives of epoxides involving a tertiary center, see: Rickborn, B. and Gerkin, R J. Am. Chem. Soc. 1971, 93, 16931700.
9. 1-Acetyl-1,3,4-trimethylnaphtho[2,3-c]-2H-pyran (1b) : mp $80-82^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1730,1660$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{CH}_{3}-1,2.05(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=0.8 \mathrm{~Hz})$ and $2.09(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=0.8 \mathrm{~Hz})$ $\mathbf{C H}_{\mathbf{3}} \mathbf{- 3 , 4 ,} 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathbf{C H}_{\mathbf{3}} \mathbf{- C O}, 7.34-7.45(\mathrm{~m}, 2 \mathrm{H}) \boldsymbol{H}-7,8,7.46(\mathrm{~s}, 1 \mathrm{H})$ and $7.52(\mathrm{~s}, 1 \mathrm{H}) \boldsymbol{H}-5,10,7.73-7.78$ ($\mathrm{m}, 2 \mathrm{H}$) $\boldsymbol{H}-6,9 ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.6,17.4,22.9,25.4\left(\mathbf{4} \mathrm{CH}_{3}\right), 85.1(\boldsymbol{C}-1), 104.8(\boldsymbol{C}-4)$, 118.5 to 127.8 ($6 \mathbf{C H}$ arom.), 129.9 to 133.5 ($\mathbf{4 C}$ quat.arom.), 148.5 ($\mathbf{C - 3}$), 208.4 ($\mathbf{C O}$ - $\mathbf{C H}_{3}$); EIMS (70 eV) m / z (r.i.) $266(31), 223(100)$. Anal. Calc for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 81.17$; $\mathrm{H}, 6.81$; Found C, 81.13; H, 6.88.

1-Formyl-1,4-dimethyl-5,10-diphenylnaphtho[2,3-c]-2H-pyran (1c) : mp 204-206 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) 1730,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}) \mathrm{CH}_{3}-4,1.52(\mathrm{~s}, 3 \mathrm{H})$ $\mathbf{C H}_{\mathbf{3}} \mathbf{- 1}, 6.42(\mathrm{q}, \mathrm{1H}, \mathrm{~J}=1,3 \mathrm{~Hz}) \boldsymbol{H} \cdot \mathbf{3}, 7.20-7.51(\mathrm{~m}, 14 \mathrm{H}) \boldsymbol{H a r o m} ., 9.31(\mathrm{~s}, 1 \mathrm{H}) \boldsymbol{H} \mathbf{- C O} ;{ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.3\left(\mathrm{CH}_{3}-4\right), 20.2\left(\mathrm{CH}_{\mathbf{3}}-\mathbf{1}\right), 84.4(\boldsymbol{C}-1), 114.6(\boldsymbol{C}-4), 125.6$ to 131.5 ($\mathbf{1 4} \mathbf{C H}$ arom.), 127.2 to 140.4 (8 C quat.arom.), 142.2 (CH-3), 191.8 (CHO).EIMS (70 eV) m/z (r.i.) 390 (47), 343 (90), 328 (71).

1-Acetyl-1,3,4-trimethylbenzo[$c]$-2H-pyran (1f): oil; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1720,1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{~s}, 3 \mathrm{H}) \mathbf{C H}_{\mathbf{3}} \mathbf{- 1}, 1.95(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz})$ and $2.05(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz}) \mathbf{C H}_{\mathbf{3}} \mathbf{- 3}, 4,2.22(\mathrm{~s}, 3 \mathrm{H})$ $\mathbf{C H}_{3}-\mathbf{C O}, 7.12(\mathrm{~m}, 2 \mathrm{H}) \boldsymbol{H}-5,8,7.19(\mathrm{~m}, 1 \mathrm{H})$ and $7.30(\mathrm{~m}, 1 \mathrm{H}) \boldsymbol{H}-6,7 ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 12.4$, 17.2, 22.4, $25.6\left(4 \mathrm{CH}_{3}\right), 84.8(\boldsymbol{C}-1), 104.9(\mathrm{C}-4), 120.7$ to 128.3 (4 CH arom.), 130.5 and 132.0 (2 C quat.arom.), 147.9 (C-3), 209.4 (CO-CH3); EIMS (70 eV) m/z (r.i.) 216 (1), 173 (100).
10. - Breitmaier, E.; Voelter, W. in Carbon-13 NMR Spectroscopy, VCH Ed, 3rd Edition 1987, p. 215.
11. - Grob, C-A.; Angew. Chem. Int. Ed. 1967, 6, 1-15.
(Received in France 20 December 1996; accepted 13 February 1997)

